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Bayesian Random Effect Modeling 
for analyzing spatial clustering of 
differential time trends of diarrhea 
incidences
Frank Badu osei & Alfred Stein

In 2012, nearly 644,000 people died from diarrhea in sub-Saharan Africa. This is a significant obstacle 
towards the achievement of the Sustainable Development Goal 3 of ensuring a healthy life and 
promoting the wellbeing at all ages. To enhance evidence-based site-specific intervention and 
mitigation strategies, especially in resource-poor countries, we focused on developing differential 
time trend models for diarrhea. We modeled the logarithm of the unknown risk for each district as 
a linear function of time with spatially varying effects. We induced correlation between the random 
intercepts and slopes either by linear functions or bivariate conditional autoregressive (BiCAR) 
priors. In comparison, models which included correlation between the varying intercepts and slopes 
outperformed those without. The convolution model with the BiCAR correlation prior was more 
competitive than the others. The inclusion of correlation between the intercepts and slopes provided an 
epidemiological value regarding the response of diarrhea infection dynamics to environmental factors 
in the past and present. We found diarrhea risk to increase by 23% yearly, a rate far exceeding Ghana’s 
population growth rate of 2.3%. The varying time trends widely varied and clustered, with the majority 
of districts with at least 80% chance of their rates exceeding the previous years. These findings can be 
useful for active site-specific evidence-based planning and interventions for diarrhea.

Diarrhea remains a public health menace, and a global obstacle to attain the Sustainable Development Goal 3 
(SDG-3) of ensuring healthy lives and promote well-being for all at all ages. Globally, over 1.7 billion episodes 
of diarrhea are recorded every year with the majority of these occurring in low and middle-income countries1–5. 
The etiological agents, rotavirus, enteropathogenic E. coli, enterotoxigenic E. coli, calicivirus, and Shigella6,7, are 
primarily mediated by environmental, climatic and sociodemographic factors8. Children under five years are 
the most vulnerable9. In sub-Saharan Africa, about 644,000 people died from diarrhea in 2012, accounting for 
6.7% of deaths. From the 1980s to 2008, diarrhea mortality declined from an estimated 4.5 million to 1.3 million 
in 2008 with the advent of oral rehydration salts, improved sanitation and access to clean water1. Also, the inci-
dences may be declining slightly4, yet the statistics are still sobering and unacceptable. Provision of treated water 
and proper sanitary conditions remains the formidable approach to reducing diarrhea. Budgetary constraints of 
resource-poor countries make this almost unfeasible. If, however, the spatial patterns of the temporal dynamics 
are well understood, then limited resources could be channeled to areas experiencing elevated growth trends.

The study of the space-time variation of diarrhea could give critical etiological clues and help to improve 
resources allocation and planning of interventions. Several studies have addressed issues of spatial and temporal 
variation of diarrhea with differences in environmental and socioeconomic risk factors, as well as detection of 
areas with exceptionally high risk10–14. Most of these studies, however, either focus on the spatial patterns at a par-
ticular point in time or the temporal patterns for an entire geographic area. The reason may be attributable to data 
challenges and/or unavailable easy to implement statistical methods. Two implicit assumptions are applied under 
such studies; either the temporal variation of the spatial patterns is assumed to be flat or the spatial variation of 
the temporal pattern is assumed to be flat. The current advent of information technology has provided oppor-
tunities to manage and store geographically and temporally related disease data, at least aggregated over large 
geographic and temporal windows. Bayesian hierarchical modeling framework offers the advantage to reliably 
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estimate disease parameters through random effects modeling that can be extended to accommodate variation in 
space, variation in time, and variation in space-time.

In addition to cluster detection methods like the popular space-time scan statistics15,16, Bayesian model-based 
approaches have also found many applications in epidemiology for estimating space-time disease variation due 
to their flexibility in specifying a variety of spatial, temporal, and space-time interaction structures. Bernardinelli 
et al.17 introduced a parametric space-time mapping method to evaluate differential time trends for mapping dis-
ease and mortality rates. They assumed a log-linear relationship between the rates and the calendar time within 
areas and that the time trends vary from area to area. Knorr-Held18 extended separable space-time models to 
include nonparametric space-time interaction effects. The space-time interaction effects are commonly specified 
either of the four ways: unstructured temporal and unstructured spatial effects (Type I), structured temporal and 
unstructured spatial effects (Type II), unstructured temporal and structured spatial effects (Type III), or struc-
tured temporal and structured spatial effects (Type IV). The common specification for the structured temporal 
trends for either of these specifications has been the random walk prior. For infectious diseases, areas with similar 
time trends are likely to form local clusters. To this end, the focus of both Knorr-Held18 and Bernardinelli et al.17, 
and their various applications have been on providing space-time variation estimates, a divergence from our focus 
of evaluating the spatial clustering of the differential time trends.

Our aim is to study the spatial clustering of the differential time trends of small area diarrhea occurrences, 
with the aim of detecting areas of exceptionally high time trends. If there is evidence of spatial clustering of higher 
than expected temporal trends, specific intervention programs could be developed to target such areas. With our 
data of few time stamps, a parametric time trend model is decisive. A critical challenge for Bernardinelli et al.17 
was choosing between heterogeneity and clustering, and the way to account for correlation between the varying 
intercepts and slopes. To address these, we extend their methods to a convolution prior and explore different 
latent processes to account for correlation between the varying intercepts and slopes. Our data are primarily 
aggregated counts of yearly diarrhea occurrences for 170 administrative districts for five years. We hypothesize 
that each district has a diarrhea time trend with spatial random effects, either structured, unstructured or both, 
that is different from the overall time trend. To achieve this, we used hierarchical Bayesian random effect methods 
to model the random intercepts and spatially varying time trends jointly. The models we present are extensions 
of what is presented in17. We propose and compare different approaches to account correlations between the spa-
tially varying time trends and intercepts. We develop the models relying on district level diarrhea morbidities in 
Ghana, where there is limited knowledge of the spatiotemporal trends. Also, despite the declining global trends 
of diarrhea, morbidities in Ghana continue to increase and remain amongst the top 5 out-patient morbidities. 
Reported incidences increased from 726,000 cases in 2010 to 1,577,000 cases in 2014. In what follows, we describe 
the study area and the statistical modeling. Next, we present the results and discuss their implication, and end 
with some conclusions.

Methods
Study area and data. Directly or indirectly, Ghana continues to undertake development projects to increase 
access to good water and sanitation; some improvements have been achieved over the last few years19. However, 
diarrhea remains amongst the top 5 out-patient morbidities. From 2010 to 2014, incidences increased from 
726,000 to 1,577,000 cases. Accordingly, there have been considerable research interests in understanding the 
etiology, trends, and the characteristics of affected individuals in Ghana20–27. Studies of the spatio-temporal trends 
which remain significant to enhance the optimal usability of scarce resources, however, are scarce. The data used 
in this study consist of district-level diarrhea morbidities for 170 districts for five years. We obtained the data 
from the Centre for Health Information and Management (CHIM) of the Ghana Health Services (GHS). We 
obtained population estimates for the years 2010 to 2014 from the Ghana Statistical Service. The geographical 
scale of analysis was the 170 administrative districts where data had been recorded.

Statistical modeling. Bayesian hierarchical modeling easily incorporates correlation processes by including 
an intermediate layer (process layer) between the data likelihood (data layer) and the prior distributions (prior 
layer). For the data layer, we consider the spatio-temporal diarrhea counts yit, i = 1, …, m = 170 districts and 
t = 2010, …, 2014 years as independent random samples from the Poisson distribution, yit|ςit ~ Poisson(nitςit), 
where the ςit is the risk and nit is the population.

For the process layer, Bernardinelli et al.17 proposed a monotonically and differentiable log link function to 
match the risk ςit and the systematic component, ς η σς~ Nlog ( , )it it

2 , where

η β β= + + ϑ + ϑt( ) (1)it i i0 1 2 1

Here, the parameter β0 denotes the overall intercept (risk) on the log scale, and β1 a is fixed effect parameter 
for the overall time trend in diarrhea growth, while the parameter ϑ2i is the district-specific spatially structured 
differential time trends. Inferentially, β β= + ϑi i1 1 2  specifies the district-specific rate of diarrhea growth. 
Specifically, ϑ1i and ϑ2i are varying intercepts and slopes, respectively. The varying intercepts ϑ1i account for unob-
served ecological factors which might give rise to either spatially structured (clustering) or unstructured (heter-
ogeneity) extra-Poisson variation.

For a clustering model, the common specification for ϑ1i or ϑ2i is as a univariate intrinsic conditional autore-
gressive (iCAR) process, which depends upon an m × m spatial proximity matrix wij with unknown variance σϑ

2. 
The iCAR specification implies that the distribution of ϑki = {ϑ1i, ϑ2i} conditional on the set ϑk,−i = ϑk,j≠i = {ϑk1, …, 
ϑk,i−1,ϑk,i+1, …, ϑkm} are weighted averages of function evaluations of J neighboring districts; thus 

σϑ |ϑ ϑ ∑− ϑ ≠~ ( )N w, /ki k i ki k j i ij,
2 , k = 1, 2. The mean ϑ = ∑ ϑ ∑ ≠w w/ki j ij kj j i ij, ∀j ∈ wij, where wij, j = 1, …, J denotes 
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the set of J neighbors of districts i. The weights wij are fixed constants that measure the proximity of districts iand 
j. Let the set of boundary points on district i be denoted by (i). Then we define wij as a binary connectivity weight 
matrix such that wij = 1 if ∩ ≠ ∅i j( ) ( ) , and wij = 0 otherwise. For brevity, we write the iCAR prior as 

σϑ ϑ ϑ~ iCAR( , )ki ki
2
k

. Since iCAR is translational invariant, the constraints ∑ ϑ = 0i ki  is required for identifiability 
of the mean.

Choosing between heterogeneity and clustering of the time trends and/or the intercepts is critical. The choice 
depends upon the prior belief about the scale of spatial dependency. A spatial scale of dependency larger (smaller) 
than the size of spatial units leads to clustering (heterogeneity). For infectious diseases, both the smaller and 
larger scale of spatial dependency is plausible. To avoid choosing between these two, we propose to use a convo-
lution model which includes both clustering and heterogeneous random intercepts and slopes:

η β β υ υ= + + ϑ + + ϑ +t( ) (2)it i i i i0 1 2 2 1 1

where ϑki = {ϑ1i, ϑ2i} are modeled as iCAR processes σϑ ϑ ϑ~ iCAR( , )ki ki
2
k

 with unknown prior variance σϑ
2
k
 for the 

clustering components and υki = {υ1i, υ2i} are assigned Gaussian processes υ συ~ N(0, )ki
2
k

 with unknown prior 
variance συ

2
k
 for the heterogeneity components. Under this prior structure, the υ συ~ N(0, )ki

2
k

 do not depend upon 
the structure of spatial units and are said to be exchangeable. Specifying σϑ ϑ~ N(0, )i2

2
2

 implies random 
exchangeability between the differential time growths, whereas σϑ ϑ ϑ~ iCAR( , )i i2 2

2
2

 implies Markovian interac-
tions between the differential time growths. The expression σϑ ϑ ϑ~ iCAR( , )i i2 2

2
2

 then becomes a model for the 
district-specific time trends.

Correlation between random intercepts and slopes. As it stands now, the latent variables 
σϑ ϑ ϑ~ iCAR( , )ki ki

2
k

 and υ συ~ N(0, )ki
2
k

 are independent. For epidemiological purposes, allowing for correlation 
between ϑ1i and ϑ2i, and that of υ1i and υ2i could answer critical etiological questions such as how the population 
has reacted towards environmental factors introduced at the reference time of the study. Avoiding the correlation 
between the random intercepts and slopes of the time trends could cause the areas-specific time tends to be pulled 
towards the overall mean trend17. For models such as (1), and when heterogeneity modeling is the concern, 
Bernardinelli et al.17 proposed ϑ1i as drawn by a univariate normal υ συ~ N(0, )i1

2
1

, while υ2i is also drawn from a 
univariate normal conditional on ϑ1i, υ υ γ υ σ| υ υ~ N( , )i i i2 1 1

2
2

. Here, γυ is the correlation parameter between the 
unstructured intercepts υ1i and slopes υ2i. With this premise, other variants can be deduced. For instance, when 
clustering is of concern for both slopes and intercepts, then the latent variable ϑ1i is modeled as drawn by the 
conditional autoregressive process σϑ ϑ ϑ~ iCAR( , )i i1 1

2
1

, and ϑ2i as drawn from a univariate normal conditional on 
ϑ1i, γ σϑ |ϑ ϑϑ ϑ~ N( , )i i i2 1 1

2
2

. Besides, when both clustering and heterogeneity are of concern, correlation can be 
induced by expressing σϑ ϑ ϑ~ iCAR( , )i i1 1

2
1

, υ συ~ N(0, )i1
2
1

, and υ υ γ υ σϑ + |ϑ ϑ +υ υϑ ϑ +~ N( ) , ( { }, )i i i i i i2 2 1 1 1 1
2
2 2

, 
where σ υϑ +

2
2 2

 is the total variance of ϑ1i + υ1i. An additional possibility is to account for correlations separately 
between the structured and unstructured intercepts and slopes by modeling the latent variables 

σϑ ϑ ϑ~ iCAR( , )i i1 1
2
1

, υ συ~ N(0, )i1
2
1

, γ σϑ |ϑ ϑϑ ϑ~ N( , )i i i2 1 1
2
2

, υ υ γ υ σ| υ υ~ N( , )i i i2 1 1
2
2

. For the correlation param-
eters γυ,γϑ, and γυϑ, samples may be drawn from the univariate normal distributions γ συ γυ

~ N(0, )2 , 
γ σγϑ ϑ
~ N(0, )2 , and γ συ γϑ υϑ

~ N(0, )2 , respectively.
We propose to specify the bivariate iCAR (BiCAR) for the clustering components ϑki = {ϑ1i, ϑ2i}. The  

univariate iCAR extends naturally to the BiCAR specification by replacing the univariate normal condi- 
tional distribution with a bivariate conditional distribution ϑ | ϑ ϑ ϑ Σ ∑− − ϑ ≠~ ( )N w( , ) , /ki i i ki j i ij1, 2,  where 

ϑ = ∑ ϑ ∑ ∑ ϑ ∑≠ ≠( )w w w w/ , /
T

ki j ij j j i ij j ij j j i ij1 2  is the mean vector and Σϑ is a 2 × 2 covariance matrix. The covari-
ance Σϑ has diagonal elements σΣ =ϑ ϑ[1, 1] 2

1
 and σΣ =ϑ ϑ[2, 2] 2

2
 representing the conditional variances for the 

structured ϑ2i slopes and intercept ϑ1i, respectively. The off-diagonal elements γ σ σΣ = Σ =ϑ ϑ ϑ ϑ ϑ[1, 2] [2, 1] 2 2
1 2

 
captures the within-area correlation through the correlation parameter γϑ. For brevity, we write 
ϑ ϑ Σϑ~ BiCAR( , )ki ki . For the heterogeneity components υki = {υ1i, υ2i}, we propose to use a zero-mean bivariate 
normal distribution υki ~ N2(0, Συ) where Συ is a 2 × 2 covariance matrix. The specification for Συ follows as Σϑ 
described above where σΣ =υ υ[1, 1] 2

1
, σΣ =υ υ[2, 2] 2

2
, and γ σ σΣ = Σ =υ υ υ υ υ[1, 2] [2, 1] 2 2

1 2
. Here, γυ is the 

within-area correlation between the unstructured intercepts and slopes.
For the third layer, the prior layer, we assign prior distributions to all variance parameters and fixed effects. A 

non-informative flat distribution for the intercept, p(β0) ∝ 1, is appropriate to ensure that the data drive inference. 
Non-informative priors result in posterior inference similar to maximum likelihood inference28. For the fixed 
effects, vague normal priors are specified β1, β ~ N(0, 10 )1

5 . This is the equivalent to a non-informative Gaussian 
prior. To the variance parameters σ σ σ σ= υ ςϑ{ , , }2 2 2 2

k k
, we assigned proper vague gamma priors σ−2 ~ G(0.5, 0.05) 

to ensure conjugacy and computational convenience29. We assigned a Wishart prior to the two precision matrices 
Σϑ

−1 and Συ
−1, as it is a conjugate prior for the inverse of the covariance parameters of a multivariate normal distri-

bution30,31. More precisely, we assigned Σ Ωϑ
− ~ dfWishart( , )1 , Σ Ωυ

− ~ dfWishart( , )1  with scale matrix Ω and 
degrees of freedom df = 2 for a weakly informative distribution. We set Ω as a scaled identity matrix with diagonal 
entries Ω[1, 1] = Ω[2, 2] = 1 and off-diagonal entries Ω[1, 2] = Ω[2, 1] = 0, a specification Moraga and Lawson32 
utilized to run simulation studies of multivariate iCAR modeling.

Model fitting and estimation. We fitted eight different models with different combinations and structures 
of the process layer (Table 1). Models 1 to 3 include no correlation between the intercepts and slopes while Models 
4 to 8 include different forms of interaction between the intercepts and slopes. Model 1 is a spatially varying 
unstructured time coefficients model with unstructured spatial effects. Model 2 includes an iCAR structured 
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time-varying coefficients and structured iCAR intercepts. Model 3 is a convolution model which includes spa-
tially varying unstructured and structured time effects, and unstructured and structured intercepts. Model 4 
and Model 5 extend Model 1 and Model 2, respectively, to include correlation between the intercepts and slopes. 
In Model 6, we induce correlation by expressing the sum of structured and unstructured time coefficients as a 
linear function of the sum of structured and unstructured intercepts. In Model 7, we induce separate correlations 
between the structured intercepts and slopes and the unstructured intercepts and slopes. Finally, Model 8, uses 
a BiCAR specification to account for correlation between the structured incepted and slopes and a multivariate 
normal distribution to account for correlation between the unstructured intercepts and slopes. In Table 1, we 
present details of the models and structures of the latent parameters and their prior distributions.

We estimated the parameters of the models within the Bayesian hierarchical framework. For each model, let 
the vector ψ1 be a full Gaussian latent field that represents the process layer, and ψ2 represent the prior layer, then 
the joint density p(ψ1, ψ2) = p(ψ1|ψ2)p(ψ2). Following the Bayesian paradigm, we factorize the posterior density 
p(ψ1|ψ2|y) as proportional to the product of the data layer p(y|ψ1, ψ2) and the joint density p(ψ1, ψ2), 

ψ |ψ | ∝ |ψ ψ ⋅ ψ |ψ ⋅ ψ( )p y p p p(y , ) ( ) ( )1 2 1 2 1 2 2 . We used Markov Chains Monte Carlo (MCMC) simulations to draw 
samples from the full conditional density of the posterior p(ψ1|ψ2|y). Estimation was implemented in the 
WINBUGS 1.4.3 software package33. We used 200,000 MCMC iterations and 100,000 burn-in samples, storing 
only every 20th sampled parameter of the Markov chains. We implemented the model using three independent 
chains with dispersed initial values. Convergence was assessed graphically by the autocorrelation plots of the 
traces. We fitted all models using the R2WinBUGS package33 together with the R software34. Point estimates of 
variables of interest and their associated uncertainties were obtained via the marginal posterior distributions.

Model evaluation and comparison. We evaluated the adequacy of the model fits using two different 
cross-validating predictive checks. First, we used the posterior predictive checks and Bayesian p-values, defined 
as ≥y yPr( )it it

pred , where the predicted datasets yit
pred are generated from the predictive distribution of the models. 

Bayesian p-values close to 0.5 suggests that the generated data are compatible with the model, whereas values 
close to 0 and 1 are considered extreme and hence suggest a poor fit. Since the distribution of the Bayesian 
p-values is not symmetrical, values <0.1 and >0.9 were considered extreme values and, hence, an indication of 
poor fit35. Additionally, we used the Chi-square goodness-of-fit statistic based on the discrepancy function, 
χ ς ς= ∑ −y n n[( ) / ]obs it it it it it it

2 2 36. Similarly, χpred
2  is calculated for the predicted datasets yit

pred. The two quantities 
are compared using Bayesian p-values, here, defined as χ χ≥Pr( )obs pred

2 2 . Likewise, Bayesian p-values close to 0.5 
suggests that the generated data are compatible with the model.

We compared the models using the deviance information criterion (DIC). The = +DIC D pD is the sum of 
the model fit D  and model complexity pD

37. Negative twice the log-likelihood of the deviance informs the model 
fit, while the effective number of parameters informs the model complexity. It is a generalization of the Akaike’s 
information criterion (AIC). Like the AIC, the smaller the DIC value, the better the predictive performance of the 
model.

Posterior estimates. We estimated the posterior means of the parameters from the posterior samples. For 
the parameters γϑ̂, γ̂v, and γϑ̂v of Model 8, empirical analogs were used. From the posterior estimates of the covar-
iance matrices Σϑ

ˆ  and Συ
ˆ , we estimated the within-area correlations between the structured slopes and intercepts. 

Let σ = Σϑ ϑˆ ˆ [1, 1]2
1

, σ = Σϑ ϑˆ ˆ [2, 2]2
2

, σ = Συ υˆ ˆ [1, 1]2
1

, σ = Συ υˆ ˆ [2, 2]2
2

 be the empirical variances of the structured and 
unstructured time effects and slopes, respectively. Then γ σ σ= Σϑ ϑ ϑ ϑˆ ˆ ˆ ˆ[1, 2]/

1 2
 is the empirical estimate of the cor-

relations between the structured slopes and intercepts and γ σ σ= Συ υ υ υˆ ˆ ˆ ˆ[1, 2]/
1 2

 for that of the unstructured 
slopes and intercepts. The total within-area correlation between the slopes and intercepts equals 
γ σ σ σ σ= Σ + Σ + +υ υ υϑ ϑ ϑ ϑˆ ˆ ˆ ˆ ˆ ˆ ˆ( [1, 2] [1, 2])/v

2 2 2 2
1 1 2 2

.

Model Linea predictor ηit Structured Unstructured correlation

1 β β υ υ+ + +t( )i i0 1 2 1
υ συ~ ( )N 0,ki k

2

=k 1, 2

2 β β+ + ϑ + ϑt( )i i0 1 2 1
σϑ ϑ ϑ~ ( )iCAR ,ki ki k

2

k = 1, 2

3 β β υ υ+ + ϑ + + ϑ +t( )i i i i0 1 2 2 1 1
σϑ ϑ ϑ~ ( )iCAR ,ki ki k

2

k = 1, 2
υ συ~ ( )N 0,ki k

2

k = 1, 2

4 β β υ υ+ + +t( )i i0 1 2 1
υ σϑ~ N(0, )i1 1

2

υ υ γυ σ| υ~ N( , )i i i2 1 1 2
2 γ συ γυ

~ N(0, )2

5 β β+ + ϑ + ϑt( )i i0 1 2 1
σϑ ϑ ϑ~ iCAR( , )i i1 1 1

2

γ σϑ |ϑ ϑ ϑ~ N( , )i i i2 1 1 2
2 γ σγϑ ϑ

~ N(0, )2

6 β β υ υ+ + ϑ + + ϑ +t( )i i i i0 1 2 2 1 1

σϑ ϑ ϑ~ iCAR( , )i i1 1 1
2

ϑ2i + υ2i|ϑ1i,υ1i~
γ υ σϑ +υ υϑ ϑ +N( ( ), )i i1 1 2 2

2
υ συ~ N(0, )i1 1

2 γ συ γ υϑ ϑ
~ N(0, )2

7 β β υ υ+ + ϑ + + ϑ +t( )i i i i0 1 2 2 1 1
σϑ ϑ ϑ~ iCAR( , )i i1 1 1

2

γ σϑ |ϑ ϑϑ ϑ~ N( , )i i i2 1 1 2
2

υ συ~ N(0, )i1 1
2

υ υ γ υ σ| υ υ~ N( , )i i i2 1 1 2
2

γ σγϑ ϑ
~ N(0, )2

γ συ υ~ N(0, )2

8 β β υ υ+ + ϑ + + ϑ +t( )i i i i0 1 2 2 1 1 ϑ ϑ Σϑ~ BiCAR( , )ki ki υki ~ N2(0, Συ) γϑ, γυ, γϑυ

Table 1. Latent structures of the different models.
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Next, we estimated the relative contribution of the structured and unstructured slopes and intercepts as frac-
tions of the marginal variability of σϑ

2
k
 over the total marginal variability σ σ+ υϑ

2 2
k k

. Since the parameter σϑ
2
k
 is not 

directly available, we used its empirical analog σ = ∑ ϑ − ϑ −ϑˆ n( )/( 1)i ki k
2

k
. Thus, σ σ σ= + υϑ ϑ ϑˆfrac / )2 2 2

k k k k
 is the 

relative contribution of spatially structured slope and intercepts.

Spatial clustering of time trends. Our critical interest was on the spatial clustering of the differential time 
trends. To evaluate this, we dwell on the uncertainties or posterior probabilities associated with the posterior 
means of the district-specific time trends β1i. We used the spatially smoothed exceedance probabilities of the 
posterior measures to detect and map clustering of these parameters instead of their raw estimates. First, from the 
posterior samples β = …{ }i

g
g G1 1, ,  of say β1i, we estimated the exceedance probabilities β β>Pr( )i

Th
1 1  as the probabil-

ity that β1i exceeds some threshold level say β Th
1 . We estimated β β>Pr( )i

Th
1 1  as how frequently the posterior 

samples β = …{ }i
g

g G1 1, ,  exceed the threshold β Th
1  during the MCMC iterations. We then define 

β β β β> = ∑ >= I GPr( ) ( )/i
Th

g
G

i
g Th

1 1 1 1 1 , where I() is the indicator function. Next, we estimated the spatially 
smoothed posterior probabilit ies as β β β β> = ∑ > += JPr( ) Pr( )/( 1)i

Th
j
J

ij
Th

1 1 0 1, 1 ,  ∀ j  ∈  wij,  where 
β β β β> = >Pr( ) Pr( )i

Th
i

Th
1, 0 1 1 1 . We set the threshold at β β=Th

1 . We checked the sensitivity of the exceed-
ances  by  es t imat ing  the  probabi l i t i es  for  d i f ferent  incrementa l  mult ipl icat ive  e f fec ts 

β = . . . . .exp( ) {exp(1 0, 1 10, 1 20, 1 25, 2 0}Th
1 . Also for the random effects, ϑ1i, υ1i, ϑ2i, υ2i, we similarly estimated 

the spatially smoothed exceedance probabilities ϑ >Pr(exp( ) 1)i1 , ϑ >Pr(exp( ) 1)i2 , υ >Pr(exp( ) 1)i1 , and 
υ >Pr(exp( ) 1)i2 .

Results and Analyses
The adequacy of the models was evaluated using Bayesian predicted checks and the chi-square goodness-of-fit 
test. Table 2 provides estimates of the model fit parameters. An adequate fit is suggested for all the models as the 

χpBayes for the chi-square goodness-of-fit test lies within the interval [0.1, 0.9]35. On the mean of the Bayesian 
p-values of the predictive checks, all models obtained = .p 0 5Bayes

pred , also supporting adequate fit. Additional con-
firmation of adequate model fit is also based on the fact that just less than 3% of the observations had extreme 
Bayesian p-value, <p% _ 3%Bayes

ext pred .
We studied the sensitivity of our results to various gamma priors for the variance parameters. We specifically 

varied the rate parameter in the gamma prior while maintaining the shape parameter. These results are shown in 
Table 2. Under the different gamma priors, the DIC values for each model were only marginally different, suggest-
ing that the results are not overly sensitive to the choice of gamma priors. Analyzing the DIC values from Table 2 
for model comparison, the significance of including correlation between the random intercepts and slopes can be 
observed in Models 4 to 8. The DIC values of these models decrease as compared to Models 1 to 3. This indicates 
that the possible correlation between the random slopes and intercepts should not be overlooked. Models 4 to 8 
each have their weakness and strengths in terms of accounting for the correlations. Unlike Models 4 to 6 which 
are able to either account for correlation between unstructured intercepts and slopes, or structured intercepts and 
slopes or both, Models 7 and 8 evaluate joint correlations between the unstructured intercepts and slopes and 
between the structured intercepts and slopes. Comparing the DIC values, Model 8 provides an improvement over 
all the other models indicating that multivariate structures on the intercepts ϑki and slopes υki best support our 
data. The advantage of specifying ϑki and υki as multivariate structures is noticeable in capturing the separate 
correlations; thus γϑˆ 1,2

 between ϑ1i and ϑ2i, γυ̂1,2
 between υ1i and υ2i, and the total correlation γϑ̂v. Yet, Model 7 is 

also appealing regarding its simple structure. In our implementation, the data showed no significant correlation 
between the structured slopes and intercepts for Models 7 and 8.

Table 3 reports the posterior estimates of the parameters of all models. We observe consistent estimates for 
most of the parameters, though differences are observed for some parameters. The overall incidence rate is 

β ≈ .exp( ) 4 50  per 100 people for all the models. For the time trends, all models showed β ≈ .exp( ) 1 231 . This 
corresponds to 23% yearly average increases in diarrhea risk in Ghana. Unlike the variances of the structured and 
unstructured intercepts σϑ

2
1
, συ

2
1
 and slopes σϑ

2
2
, συ

2
2
, the differences in the posterior estimates of the 

between-districts variances of the risks σς
2 are marginal. This indicates that the district-specific risk estimates are 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

χobs
2 901.96 905.77 904.13 899.45 885.83 898.62 897.31 896.03

χrep
2 832.96 831.26 834.25 832.39 833.29 832.70 831.87 832.03
χpBayes

0.87 0.89 0.89 0.88 0.82 0.86 0.88 0.86

pBayes
pred 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

p% _
Bayes
ext pred 1.76 1.41 1.65 2.11 0.71 1.18 1.76 0.94

Gamma priors 
(shape, rate) DIC

(0.5, 0.0005) 10668.2 10658.2 10653.1 10646.5 10647.0 10645.9 10640.8 10626.8

(0.5, 0.005) 10669.4 10659.4 10652.4 10644.7 10644.5 10644.9 10641.6 10628.6

(0.5, 0.05) 10667.2 10656.2 10651.0 10642.8 10644.4 10644.0 10640.1 10627.5

(0.5, 0.5) 10667.5 10657.5 10651.7 10645.8 10648.5 10645.6 10641.7 10627.8

Table 2. Parameters of Models fit and comparison.
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robust to the choice of model and latent structures for smoothing. Thus, little overall smoothing is performed. The 
variances, on the other hand, are sensitive to the choice of latent smoothing structures imposed on the varying 
intercepts and lopes. We observe, however, similar variances amongst the varying intercepts or slopes for some 
models where the correlation parameter is the only difference. For instance, Models 1 and 4 have marginal differ-
ences in their variances for the intercepts but not for the slopes. The same applies to Models 2 and 5, suggesting 
that the intercepts parameters are rather robust when the correlation between intercepts and slopes are accounted 
for in this manner. For the models with either structured or unstructured random effects (intercepts and slopes 
or both), the unstructured components always dominate ( <ϑfrac 50%

2
 and <ϑfrac 50%

2
). This suggests the 

dominance of heterogeneity over clustering. Model 6 accounts for the correlation between the convolution inter-
cepts and slopes. We observe the same correlation parameter estimate as Models 4 and 5, with a similar variance 
for the structured intercepts of its variant model (Model 3), except for the structured intercepts component, 
which is largely reduced. This is an indication of the robustness of the convolution method of accounting for 
correlation between the random slopes and intercepts. Results of Models 7 and 8 indicate similar estimates for 
most variance components since they both account for separate correlations between the unstructured and struc-
tured intercepts and slopes.

The correlation parameters γυ, γϑ, and γϑv for Models 4, 5 and 6, respectively, are not significantly differ-
ent probably because they use similar structures to account for the correlations. Model 6 is an improvement of 
Models 4 and 5; although the DIC is only slightly lower than the previous models, it is able to capture the fraction 
of spatially structured variation within the random intercepts. For Models 4 to 8, the correlation parameters can 
be interpreted as scale factors to estimate the scaled versions of the random intercepts. Specifically, for Model 4, 
γυ = −0.1899 is the scale factor for estimating the random slopes from the corresponding random intercepts. The 
correlation parameter γϑv for Model 8, on the other hand, can be likened and interpreted as Pearson’s correlation 
coefficient.

Model 8 shows there is an overall increasing time trend of β = .exp( ) 1 231  for diarrhea in Ghana. This is also 
interpreted as the rate ratio between two consecutive years and implies diarrhea risk increases 1.23 times every 
year. The estimate of the correlation parameter γϑv = −0.287 implies that lower intercepts are associated with 
more positive slopes. We further present maps of the posterior estimates of important quantities. Figure 1 shows 
the distribution of the differential time trends which is of primary interest. For ease of interpretation, β1i are expo-
nentiated such that they are interpreted as multiplicative effects. Thus, exp(β1i) > 1 implies a positive time trend, 
whereas exp(β1i) < 1 implies a negative time trend. We observe increasing trends of diarrhea throughout, except 
for a few districts within the south-central parts which have a decreasing or no temporal changes. There are also 
isolated instances (4 districts) with extreme time trends exp(β1i > 2.0). To assess the statistical significance and the 
clustering patterns of the time trends, we mapped the spatially smoothed posterior probability that β1i exceeds the 
mean time trend β1. Same were estimated for the thresholds β = . . . . .exp( ) {1 0, 1 10, 1 20, 1 25, 2 0}Th

1  (Fig. 2). 
Districts with darker (lighter) grey have at least 80% probability of exceeding (falling below) the threshold. While 
fewer districts have at least a 0.8 chance of their trend to exceed the mean time trend β = .exp( ) 1 231 , the majority 
of districts have 80% chance of their trends to exceed β = .1 0Th

1 , just as that of β = .1 10Th
1 . This suggests an 

increasing time trend for the majority of the districts. No district has at least 0.8 chance of its trend to exceed 
β = .exp( ) 1 251  and β = .exp( ) 2 01 . This indicates that the few isolated areas identified with extreme time trends 

exp(β1i > 2.0) are outliers.
Figures 3 and 4 show the random effects of the intercepts and slopes and their associated exceedance proba-

bilities, respectively. Recounting Fig. 4, maps of exp(ϑ1i) and exp(υ1i) are interpreted as residual spatially struc-
tured and unstructured risks after accounting for time trends, respectively. That of exp(ϑ2i) and exp(υ2i), on the 
other hand, are the residual time trends after accounting for the mean time trend. As expected, we observe no 
spatial similarity between these maps, except that the unstructured random effects dominated the structured 

Parameters

Without correlation With correlation

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

βexp( )0 0.0449 0.0449 0.0452 0.0446 0.0449 0.0452 0.0450 0.0450

βexp( )1 1.2318 1.2332 1.2322 1.2339 1.2338 1.2299 1.2333 1.2353

σς
2 0.1673 (0.0111) 0.1744 (0.0114) 0.1679 (0.0111) 0.1689 (0.0107) 0.1711 (0.0115) 0.1690 (0.0111) 0.1693 (0.0110) 0.1667 (0.0107)

σϑ1
2 * 1.4375 (0.1805) 0.1166 (0.0846) * 1.4961 (0.1856) 0.0699 (0.0529) 0.0764 (0.0586) 0.2117 (0.0854)

σϑ2
2 * 0.1802 (0.0310) 0.0227 (0.0209) * 0.0386 (0.0386) * 0.0104 (0.0122) 0.0717 (0.0186)

συ1
2 0.327 (0.038) * 0.2633 (0.0464) 0.3253 (0.039) * 0.2799 (0.0404) 0.2757 (0.0390) 0.2528 (0.0395)

συ2
2 0.049 (0.007) * 0.0383 (0.0089) 0.0383 (0.0062) * * 0.0262 (0.0129) 0.0495 (0.0079)

σ υϑ +2 2
2 * * * * * 0.0381 (0.0065) * *

γϑˆ * * * * −0.1827 (0.0346) * −0.0040 (0.0541) −0.1385 (0.1966)

γ̂v
* * * −0.1899 (0.0346) * * −0.2110 (0.0408) −0.4723 (0.0903)

γϑˆ v
* * * * * −0.1866 (0.0333) * −0.2870 (0.0973)

ϑfrac 1
* * 30.98 * * 26.41 28.01 37.45

ϑfrac 2
* * 32.17 * * * 28.51 41.92

Table 3. Posterior estimates of model parameters. *Non-available.
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components. Comparing the maps of exp(ϑ2i) and exp(υ2i), we can construe that the spatially unstructured com-
ponents of the time trends dominated and accounted for 64.8% of the random slope variation (Table 3). Similarly 
comparing exp(ϑ1i) and exp(υ1i), the spatially unstructured residual spatial effects dominated by 71.9%.

Discussion
This study presents an extension of a standard approach to analyzing spatial patterns of time trends in spatial epi-
demiology as has been developed by Bernardinelli et al.17. Unlike the direct applications of existing methods17,18 
and their applications, our focus has not only been on estimating the time trends but also evaluating the spatial 
clustering of the time trends. The epidemiological context of the study dwells on studying the differential time 
trends of diarrhea occurrences in Ghana. Estimating the time trend for each area would be a critical challenge in 
frequentist statistics in terms of reliability of estimates due to the number of fewer time stamps. In our hierarchi-
cal Bayesian space-time approach, we have taken advantage of the ability to borrow information across both space 
and time to improve the reliability of our estimates. The inclusion of the correlation term between the random 
intercepts and slopes has both methodological and epidemiological implications. Models with the correlation 
terms were observed to be superior, in terms of prediction power, over those without.

Here, we discuss both the issues arising out of the statistical modeling and the epidemiological implications 
for the analysis of diarrhea surveillance data in Ghana. The preferred model, amongst those without correlation 
between the intercepts and slopes, is Model 3. This model avoids choosing between heterogeneity and clustering 
for both the time trends and residual spatial variations. The significance of the correlation parameters in Models 
4 to 7 suggest the importance to include correlation between the intercepts and slopes, the avoidance of which 
would cause estimates of the district-specific trend to be pulled towards the mean trend17. Derivation and com-
paring variant extensions to incorporate this correlation proofed worthwhile as the strengths and weakness of 
each approach were unveiled. Inducing correlation by expressing the random components of the slopes as a linear 
function of the random intercepts is straightforward. Yet, the model with BiCAR correlation (Model 8) showed 
higher performance and preferred over the others in our case. This model has the advantage to estimate the cor-
relation between the unstructured intercepts and slopes, between the structured intercepts and slopes, and the 
overall correlation. Important differences in our models are the variation in time trends and the way correlation 
between intercepts and slopes are accommodated. We conclude that the inherent structure of the data should 
guide the choice of correlation method by comparing competing models. Centering the covariate, in this case, the 
time, should reduce the correlation between the intercepts and slopes, but not for the case of strong inherent cor-
relation. For cancer related and non-infectious diseases this might work. In our case, we explicitly accounted for 
the inherent correlation. We observed the correlation to be significant even though the time variable was centered. 
Robust parameter estimation is not the only advantage to account for correlation; the kind of correlation between 
the random intercepts and slopes (either negative or positive) presents an important etiological clue regarding the 
response of the population to environmental or climatic changes. For our study, Models 4 to 8 indicated a negative 
association between the intercepts and slopes, implying that the district-specific risks are converging to the same 
levels. The etiological clue might be that environmental risk factors which were frequently different in the past are 

Figure 1. Map of the spatial distribution of the differential time trends (left) and its histogram (right).
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currently frequently similar. Population growth, unplanned urbanization, and rural-urban migration which have 
exceeded the availability of safe drinking water and sanitation could be the causal factors.

From an epidemiological point of view, the current study helps to form a clearer picture of the space-time 
trends of diarrhea in Ghana, prompting for an effective control strategy. The average time trend, β ≈ .exp( ) 1 231 , 
reflecting a yearly incremental rate of 23% is striking as it far beats the yearly population growth rate of nearly 
2.3%. This alone is enough indication to prompt health officials and policymakers about the severity of diarrhea 
menace. Returning to the observed spatial patterns of the time trends which is the primary objective of this study 
(Fig. 3), there is wide spatial variation, of which the unstructured components dominate over the structured ones. 

Figure 2. Exceedance probabilities of the differential time trends for different thresholds.

https://doi.org/10.1038/s41598-019-49549-4


www.manaraa.com9Scientific RepoRtS |         (2019) 9:13217  | https://doi.org/10.1038/s41598-019-49549-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

This is where avoiding choosing between heterogeneity and clustering is relevant. It suggests the importance of 
household level risk factors (captured by unstructured heterogeneity) in controlling the temporal effects of diar-
rhea. The spatially varying growth rates could indicate varying responses to time-varying climatic risk factors 
such as temperature, humidity, and rainfall. These are known to influence the risk of diarrhea infections10,38. 
Additional plausible interpretation, especially for districts with high time trends, could be improvements in the 
disease surveillance systems or reporting strategies. Additionally, the random effects of the time trends, especially 
the structured components, may also be concomitant with district-level population growth changes, but further 
studies are required to sustain this as fact. For the unstructured component, deterioration of household-level 
water and sanitation amenities are plausible factors and likewise requires further studies. That said, the probabil-
ity maps of the structured and unstructured time trends could easily support policymakers about districts of 
needed concern for either household level targeting or regional (beyond district-level) targeting. Either way, 
improvements in household level amenities will have ripple effects on district or regional-level clustering. In a 
nutshell, these findings deserve further reflection by health officials and policymakers in line with which prompt 
actions might be required.

Most small area health studies focus on small area contrasts of the risk for a single temporal window or tem-
poral contrasts for the whole study area. While we developed our models with a focus on diarrhea in Ghana, 
an extension to other diseases and/or other developing countries is conceptually straightforward. The novelty 
of our study is partly based on the variant approaches developed to induce correlation between the intercepts 
and slopes. Here, for our data with few times stamps, we have used Bayesian random effects model to evaluate 
the small area contrasts of the linear temporal trends. It can be argued that our approach is similar to the Type 
IV interaction since the linear trends (structured) with local slopes are specified for each district which are then 
further smoothed (structured) over space, except that we additionally focused on the spatial clustering of the time 
trends. Also, accounting for correlation between the intercepts and slopes is therefore simple since each spatial 
units has a single slope unlike the case of the Type IV where the number of slopes per spatial unit is equivalent to 
the length of the random walk. However, for data with many time stamps, our approach has the disadvantage to 

Figure 3. Residual random effects of the structured and unstructured time trends and the risk.
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over smooth the temporal trends due to the imposition of linear time trends. Extension of the parametric linear 
trend model to a nonparametric time trend model like the random walk approach, however, is possible when the 
focus is to detect where and when the time trends cluster.

In a similar objective to our study, Waller et al.39 explored the spatio-temporal patterns in the county-level 
incidence of Lyme disease in the northeastern United States. Another distinction here is that we have developed 
and compared different methods to accommodate the inherent correlation between the random components of 
the intercepts and slopes. It may be possible to extend the time trend component to a random walk prior instead 
of imposing linearity if data for a substantial number of temporal points are available. Within our study area, a 
typical infectious disease extension is to compare with the spatially varying temporal trends of intestinal parasites 
morbidities which also has similar risk factors. In the future, we intend to extend our study to a bivariate model, 
where the spatially varying time trends of two diseases could be determined jointly.

Now we turn to the implications of our study for public health policy and interventions. We indeed reiter-
ate that, in health policy research, the models could be implemented to identify and map areas with extremely 
increasing time trends with a view of determining critical areas needing interventions. In fact, it is noteworthy to 
state that the patterns of infectious diseases are dynamic rather than static. Hence, since our study is retrospective, 
public health intervention policies should rather be based on results of new data at the time of their developments.

Our study also has some limitations. First, our study has the implicit assumption of equal within-district time 
trends without consideration for household or relatively smaller area-level trends. Although we attempted to 
capture this effect through the unstructured random components of the time trends, it could instead be spurious. 
That said, the significance of the study to public health far outweighs these limitations. In the future, we intend to 
focus on spatial disaggregating of the time trends to account for within area variation.

Figure 4. Exceedance probabilities of Residual random effects of the structured and unstructured time trends 
the risk.
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Conclusions
In this study, we have demonstrated how space-time random effect modeling is useful to detect district-specific 
time trends of diarrhea. Models which account for correlation between varying intercepts and slopes are compet-
itive than those without, with a BiCAR method being the most competitive. The inclusion of correlation between 
the intercepts and slopes provided additional epidemiological information, illuminating the response of the dis-
ease dynamics to environment changes in past and present. We found increasing trends of diarrhea risk amongst 
many districts, but many with trends lesser than the overall mean trend. The spatially varying trend maps are 
useful for guiding interventions and resource allocations geared towards curbing this menace. Extensions of our 
models to other or multiple infectious diseases are straightforward, and we seek to venture into this in the future. 
However, flexible usability of our approach by public health professionals in Ghana will require further engage-
ments and capacity training which we aspire to fulfill in the future.

Data Availability
The datasets used and/or analyzed during the current study are available from the CHIM of the Ghana Health 
Services upon reasonable request
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